Internet Addressing

- Today's topics:
 - What are Internet addresses?
 - Why do we need them?
 - How are they used?

Universal Communication Service

- A *universal communication service* allows any host to communicate with any other host
- This requires a globally accepted method of identifying each host connected to the internet
- Internetworking strives to provide an universal communication service

How to Uniquely Identify a Host?

- Name what an object is
 - Well suited for humans
 - Example: www.cs.jmu.edu
- Address where an object is
 - Well suited for machines
 - Example: 134.126.20.50
- Route how to get to an object

Internet Addresses

- Also called IP addresses
- 32-bit integers
- Global host identifiers
- Chosen to make routing efficient
- IP address = (netid, hostid)

The Original Classful Addressing Scheme

	01234	8		16	24	31	
Class A	0 netid	hostid					
Class B	1 0	netid hos			stid		
					T		
Class C	1 1 0		netid		hostid		
			p				
Class D	11110	multicast address					
ļ <u>.</u>							
Class E	[1]1]1]1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Classes of IP Addresses (cont)

- A small number (\sim 2 7) of class A networks with a large number (\sim 2 24) of hosts
- A medium number ($\sim 2^{14}$) of class B networks with a medium number ($\sim 2^{16}$) of hosts
- A large number $(\sim 2^{21})$ of class C networks with a small number $(\sim 2^8)$ of hosts

Addresses Specify Network Connections

■ What is R1's address?

R1 requires multiple IP addresses

Addresses Specify Network Connections (cont)

- Each address corresponds to one of the machine's connections
- Because IP addresses encode both a network and a host on that network, they do not specify an individual computer, but a connection to a network
- A router connecting *n* networks has *n* distinct
 IP addresses

IP Addresses Conventions

- The smallest hostid (all 0's) is never assigned to an individual host, instead it is used to refer to the network
- IP addresses can refer to hosts or networks
- Examples:
 - (6.8) = host #8 on network #6
 - (9,0) = network #9

IP Addresses Conventions (cont)

The largest hostid (all 1's) is never assigned to an individual host, instead it is used to refer to a directed broadcast

• Example:

IP Addresses Conventions (cont)

■ There is also a limited broadcast address (all 1's for both netid and hostid) that broadcasts on the local network

• Example:

• (111111111111111111111111111111111) = all hosts on the local network

IP Addresses Conventions (cont)

Summary:

- A field of all 1's can be interpreted to mean "all"
- A field of all 0's can be interpreted to mean "this"